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Project Integration Architecture:
Formulation of Semantic Parameters

William Henry Jones
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

ABSTRACT: One of several key elements of the Project Integration Architecture (PIA) is the intention to formulate
parameter objects which convey meaningful semantic information. In so doing, it is expected that a level of automation
can be achieved in the consumption of information content by PIA-consuming clients outside the programmatic boundary
of a presenting PIA-wrapped application. This paper discusses the steps that have been recently taken in formulating such
semantically-meaningful parameters.

1 Introduction

The analysis of the whole of an engineering system fre-
quently involves a number of cooperating analyses, each
focusing on a particular discipline of analysis relevant to
the whole. Each of these analyses, in turn, deals with a
number of parameters characterizing the particulars of the
analysis. Traditionally, the meaning of these parameters
is ‘understood’ only within the application code in which
they are found. This understanding is in the form of pro-
gram statements which consume each particular parameter
as an input to a computation, or generate the parameter as
a result of a computation.

To another analysis, such a parameter is only a number
without meaning, at least until such time as a user of that
other analysis supplies the parameter as an input in some
particular spot. By so doing, semantic meaning is attached
to the number, but that understanding is, again, by the na-
ture of the coding in which the input is used. The consum-
ing analysis is not able to look at the number and say “Ah,
a viscosity. Just what I need.”, but is instead told “Here is a
number. Use it as the viscosity number in the program.”

The nature of this traditional method for establishing the se-
mantic meaning of a parameter results in the persistent need
for something (usually a person) to arrange things. It is this
need that so often hampers the arrangement of cooperat-
ing analysis codes into, well, cooperating analysis codes. It
is often the case that the cooperation is between the people
tending the codes rather than between the application codes
themselves. Not infrequently this cooperation devolves to
the most cumbersome, error prone, manual forms imagine-
able.

Of course, many worthy attempts have been made to treat
the topic of code cooperation, usually through the vehicle
of a well-known file format to be accepted and supported by
all of the codes of a cooperating suite. In such approaches,
the semantic meaning of a parameter is established by its
location within the file structure. For instance, in a simple
file structure, it might be declared that the sixteenth num-
ber in the file is always the exit total pressure of the flow
field described by the file, whatever that flow field might be.
Such a solution to the problem is, of course, entirely valid,
but for mechanical reasons the approach has not achieved
widespread acceptance.

In dealing with this area, the Project Integration Architec-
ture (PIA) [1] takes a different approach by capitalizing
upon the object technology with which it is implemented.
Objects are, to begin with the abstract, programming en-
tities that have functionality and state. That is, objects
have data and they will do things to and based on that data.
Objects, further, are of distinct kinds which can be distin-
guished as a programming act.

Given this first basis of object technology, it is then a natu-
ral extension to consider object kinds as being or represent-
ing particular things; this kind of object is a printing device
while that kind of object is a bank account. By this sim-
ple step, semantic meaning is now attached to the object
based upon its distinguishable kind. Objects of this partic-
ular kind are understood as bank accounts and the number
they yield up is, obviously, the current balance in the ac-
count.

It is precisely this capacity of objects which PIA uses to
establish the semantic nature of parameters. An object of
this particular kind is understood to be a gas total pressure
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and, thus, the number it provides when requested is not just
a number, but a gas total pressure number. By this for-
mulation, PIA establishes the semantic nature of any given
number not by its position in a file or a structure or an input
stream, but by the kind of object in which the number is
presented. Thus, a total pressure is a total pressure without
regard to where it is found.

2 Substantive Details

2.1 Basic Parametric Object

As indicated in the introduction above, PIA establishes the
semantic nature of parameters by means of the object kind
in which any given parameter is presented. This choice, far
from being a lightning stroke of technological innovation,
is nearly dictated by the nature of the object-oriented tech-
nology within which PIA is being implemented. It flows
naturally from the concept of an object kind and from the
mechanisms which allow object kinds to be distinguish in
the course of program operation.

PIA uses the further concept of object inheritance in this
semantic use. In many object-oriented technology systems
(including those used to implement PIA), object kinds (or,
more correctly in C++ terminology, the classes of which
the objects are instances) may be derived from other, base
object kinds and, in so doing, inherit the characteristics of
the base kind. (In some object-oriented technologies, ob-
ject classes may be derived from more than one class, in-
heriting the characteristics of all the base classes; however,
the PIA project, as a choice, has adhered to a strict single-
inheritance design.) This derivation and inheritance may
proceed on layer by layer, deriving kind from kind, to any
practical depth.

Using these object concepts, PIA first declares that there is
an object kind that is, simply, a parameter. At this level, a
parameter is considered to be some as yet unspecified en-
tity defining in part the state of an application. The combi-
nation of the complete set of parameters of an application
defines a unique state for that application.

The parameter object, as mentioned above, does not yet
specify what its content is. Nevertheless, a number of use-
ful characteristics common to all parameters are defined at
this level. Among other things, a parameter may be noted
to be either an input or an output of the analysis (or both
if appropriate, and possibly neither), and it may participate
in a parametric dependency graph in which changes in one
parameter may necessitate changes in one or more other

parameters.

Another small contribution at this level is the implementa-
tion of change history mechanisms. While the exact nature
of a parameter’s content is still completely undefined, it is
presumed that its state can be represented as a text. Mech-
anisms are provided to capture, date, and record such a text
as representing the prior state of a parameter at the time
of some significant change. Thus, all parameter objects,
of whatever type, have available a mechanism for tracking
their history through the engineering process.

2.2 Structural, Atomic Forms

With the parameter object kind as a basis, PIA then pro-
ceeds to specialize that kind by declaring derivatives to rep-
resent scalar, vector, and matrix parameters. At this level
the question as to just what is arranged into scalar, vector,
or matrix form is still open, but the structural arrangement
of information within the parameter is now clear. Function-
ality is provided by each object type to facilitate access to
data within its structural form.

Another structural form is derived from the foundational
parameter level: the organizational parameter. The general
outlook of the organizational parameter is that it contains
no directly consumable data (that is, it has no pressures
or velocity vectors or the like), but instead contains infor-
mation and structure which organize other parameters into
a whole. The advantage of the organizational parameter
is two-fold: it avoids a protocol-based constraint upon the
parametric identification system of the application archi-
tecture (again, see [1]) and it adds a considerable program-
matic flexibility for parameter organization and navigation
that does not exist in the static identification system.

Specialization of the scalar, vector, and matrix parameter
forms proceeds with another layer of derivation to provide
the various atomic data types common to engineering anal-
ysis. Boolean, long (integer), double (floating point), and
string forms are derived (as appropriate) for the scalar, vec-
tor, and matrix foundations.

2.3 Measurement Forms

The next derivational layer adds to double parametric
forms the various concepts or metrics of measurement [2].
That is, first a form declaring that dimensionality exists is
defined, followed by object types based upon that form that
encapsulate the concepts of length, time, velocity, mass,
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temperature, and the like. A nondimensional form explic-
itly declaring that the encapsulated parameter does not have
a dimensional characteristic is also defined as, paradoxi-
cally, a derivative of the dimensional form.

The dimensional base form provides functionality to con-
vert the encapsulated measurement between various sys-
tems of measurement. The derived dimensional forms need
only add particulars as to the dimensional nature of their
form. Thus, given, say, a force object, forces are converted
between pounds, Newtons, and dynes simply by specify-
ing the desired system of measurement to the access func-
tions. In the case of the non-dimensional form, the particu-
lars added are that there is no actual dimensional nature to
the form; however, by so doing, non-dimensional param-
eters may be freely intermixed with dimensional forms in
computations.

The conversion of measurement systems is considered a
helpful, if not entirely revolutionary, innovation. Code that
acquires information from such parameters can achieve in-
sensitivity to the actual measurement system of the param-
eter by the simple act of requesting information in the de-
sired measurement system. Further, code may be written
that does not explicitly know what system of measurement
it is working in by asking the host object for a code num-
ber specifying the measurement system and supplying that
returned code to other parameters contributing to the com-
putation.

Proceeding beyond this measurement system layer, deriva-
tion of parameter forms moves to physical types. Things
such as gas static and total pressures, enthalpies, Mach and
Reynolds numbers, and the like are defined. Derivational
layering is still present to accomodate specializations even
of these forms. For instance, the Mach number form can be
specialized to forms such as the far-field Mach number, the
local Mach number, and, again, the like.

2.4 Ancillary Information

The establishment of semantic type by object kind de-
scribed above is not always sufficient to establish the use
(or non-use) of a particular parameter. For instance, in
the presense of multiple instances of a particular parameter
kind, some further discriminator may be needed to identify
which parameter of the set is the appropriate one. Unfortu-
nately, such selections are usually specific to the needs and
semantics of the situation and no single mechanism can be
defined which provides a universally useful approach.

One factor that is often important in such situations is the

physical location of the information encapsulated by the
parameter. That is, where in the geometrical space of the
engineering system does this parameter apply. For exam-
ple, the total pressure of the gas flow at the exit of a jet
engine fan assembly is of particular interest to a compres-
sor analysis while the total pressure of the flow at the fan
entrance is of little relevance.

To provide this sort of information, PIA provides a posi-
tional description form as a part of its larger attached de-
scriptive mechanism. Each application object (of which
parameter objects are, themselves, a kind) can attach one
or more of a wide set of descriptive forms at each deriva-
tional level of the application object kind. By making use
of this mechanism and attaching a positional description to
a parameter, especially when many parameters of the same
kind coexist, a mechanism of discrimination may be pro-
vided.

The positional description is, naturally, not the only type
of ancillary information that can, or could be, added. A
propulsion station description has been devised, as well as a
deliberately nebulus related parameter mechanism. Indeed,
the limits of invention are the only practical frontier for
such mechanisms.

2.5 Contextural Information

A further opportunity to infer the semantic content of pa-
rameters exists in the arrangment of applications into di-
rected graphs (dicussed in [3]). By existing in an appli-
cation which is a predecessor, whether immediate or ex-
tended, of a consuming application, a parameter asserts a
basic semantic relevance to that consuming applicaton.

As an example of such contextural semantics, consider a
graph of applications which analyze the gas flow through
the various components of a jet engine. Presumably, such
a graph would be arranged much in the manner of the ac-
tual flow: inlet connected to fan, fan connected to compres-
sor and to fan duct, compressor connected to burner and to
customer bleed, and so on. In such a graph, the compres-
sor flow analysis would consider parameters in the fan flow
analysis to be of semantic relevance because of their exis-
tence in a predecessor application, while it would consider
parameters of the same kind existing in the combustor anal-
ysis to be of little or no relevance because of their existence
in a successor application.

Another aspect of such contextural inference (again, dis-
cussed in greater detail in [3]) is some sense of ‘closeness’
within the application graph. Parameters that are more im-
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mediate to a consuming application within the metrics of
a directed graph of cooperating applications may well be
more meaningful in a semantic manner than those of like
kind existing at some greater remove. Continuing the jet
engine flow example, parameters of the compressor anal-
ysis are probably more meaningful to the burner analysis
than are parameters of similar kind in the fan analysis.

3 Implementation Options

The implementation of semantic information discussed
above, in particular the declaration through derivation of
kind, is clear and straightforward. The approach builds
upon object discrimination mechanisms that are in place
and well established. Unfortunately, the astute will notice
(and probably point out), that the single-inheritance dictum
adopted by PIA has introduced a certain amount of duplica-
tion into the object kind implementation. In particular, once
the great foundations of scalar, vector, and matrix forms
are set, common concepts such as systems of measurement
must be replicated in each foundation.

The confluence of separate base concepts in singly-
inherited derivational systems is a point of difficulty. When
one conceptual system is to be widespread throughout a
system of object kinds, it is quite easy to encapsulate that
conceptual system in a base class and, through derivation,
allow it to be inherited throughout all of those object kinds.
When two such conceptual systems exist, but their consum-
ing object kind sets are not identical, no such easy solution
exists.

In this case, parameters may be scalars, vectors, or ma-
tricies and they may or may not be dimensional in any one
of a number of dimensional forms (length, velocity, mass,
non-dimensional, etc.). The difficulty arises in deciding
which of these conceptual systems should be foundational.
Should scalars, vectors, and matricies each be specialized
into various dimensional forms, or should the plethora of
dimensional forms each be specialized into scalars, vectors,
and matricies?

As discussed above, the selection made by PIA (for the mo-
ment) is to make the more complex concept (the structural
forms of scalar, vector, and matrix) foundational and to spe-
cialize them with the less complex and more easily repli-
cated dimensional concept. This is not an uncommon ap-
proach and, indeed, is also used here in specializing scalars,
vectors, and matricies into scalars, vectors, and matricies
of Booleans, longs, doubles, and strings. The further spe-
cialization of object kinds to systems of measurement gains
some additional justification since it is applied, in fact, only

to scalars, vectors, and matricies of doubles since only a
form capable of representing a continuum was considered
appropriate to systems of measurement.

Despite all of this fine-sounding language, there is still the
small pain that alarms each time one finds oneself replicat-
ing the same form of code or object over and over and over.
This is, to some extent, the antithesis of object orientation.
Things worth doing should only be done once and should
be inherited (and perhaps bent a little bit when necessary)
through the mechanism of derivation. As a consequence,
considerable thought has been given as to what else might
have been done.

3.1 Multiple Inheritance

Some object technologies, for instance that of C++, pro-
vide for multiple inheritance in derivation. One could de-
clare one set of objects that are scalars, vectors, and ma-
tricies and another set of objects that are lengths, veloci-
ties, masses, etc., and then derive a particular object based
upon the vector and length kinds, thus inheriting both those
characteristics.

The difficulty with systems such as this is that ‘things’
can become quite complicated, even when compared to
the fascinating complications of object-orientation itself.
In particular, the matter of object kind discrimination be-
comes rather difficult. Multiple-inheritance means that,
now, there are multiple answers (at a given level) to the
question “What kind of object are you?”

Beyond this, multiple-inheritance confuses the issue as to
which copy of common elements inherited by the multiple
bases is ‘the’ copy. If vectors and lengths share some com-
mon heritage, which copy is used in an object that is both
a vector and a length? Multiple-inheritance environments
do provide answers to such questions, but such answers are
usually not on the road to clarity.

Finally, the governing fact is that the PIA project has se-
lected a dictum of strict single inheritance. A multiple-
inheritance solution would require a complete reworking
of the very foundations of the PIA implementation.

3.2 Merging the Concept of Dimensionality

Another alternative would be to merge the multi-faceted
concept of dimensionality into a single construct and place
it in the parameter foundation from whence it would be
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inherited by scalars, vectors, and matricies. Thus, in-
stead of there being lengths, velocities, masses, et al, there
would only be dimensional parameters whose dimension-
ality would be a discoverable characteristic. Such a con-
densed concept of dimensionality could then become a
characteristic of the parameter base class and be inherited
by scalars, vectors and matricies without the necessity of
replicating these structural forms for every type of dimen-
sionality.

Such a concept has considerable appeal and may well prove
in the light of future experience to be a better choice. The
difficulty seen at this juncture is that, by making dimen-
sionality a characteristic of all parameters, it is effectively
removed from the object kind mechanism. It was thought
that the ability to interrogate a parameter object and ask,
for instance, “Are you a kind of velocity?” was a sub-
stantial capacity, as is the ability to ask “Are you a kind
of vector?” Making dimensionality a characteristic of pa-
rameters would have necessitated the invention of a second
mechanism peculiar to parameters to answer the question
“Are you a kind of velocity?” Such a maneuver was judged
even more antithetical to object-oriented architecture than
the replication of dimensionality in each of the structural
forms.

Another difficulty with the approach was that, to properly
form the dimensionally-sensitive functionality, it would
have had to have been declared in the parameter base class
before it would have acquired meaningful definition. For
example, the parameter scalar double class declares and
implements a GetDoub function which returns the encap-
sulated double value. To be properly formed as a dimen-
sionally sensitive function, the GetDoub function would
have to be declared (and implemented in a non-functional
manner) in the parameter base class before the concept
of scalars and doubles had been introduced. This, again,
seemed antithetical to object-oriented design.

3.3 Tying of Object Kinds

Another common technique in situations such as this is to
tie objects of two foundational classes together through a
pointer and pass-through functionality. Usually, the more
complicated class implements a pointer to an instance of
a less complicated class and declares and/or implements
functionality which, in fact, is simply passed on to the in-
stance of that less complicated class.

In this situation, dimensionality would probably be the
less complicated class and it would be specialized through
derivation into length dimensionality, mass dimensionality,

velocity dimensionality, and the like. The parameter class
would be implemented with a pointer to a dimensional ob-
ject (which might be null for those parameter kinds which
do not sustain the concept of dimensionality). Those pa-
rameters (the various double parameter forms) that have
dimensionality would then realize an instance of the appro-
priate dimensionality kind and, as need arose, let that tied
dimensionality object do what it will to the value encapsu-
lated by the parameter object.

As a matter of fact, it was considered that such a scheme
was very nearly in place in the form of the units descrip-
tion form of the application object layered descriptive sys-
tem. The existing descriptive form provides a text annotat-
ing the units of the described object and a code value indi-
cating the system of measurement used. (This is, in fact,
where the implemented measurement derivational layer
obtains its measurement system information.) It would
only be necessary to further specialize the descriptive form
through derivation to provide dimensional conversion (and
any other dimensionality) functionality.

The arguments against this choice, though, are the same as
before: by making the dimensionality an internal charac-
teristic, the ability to discriminate parametric forms based
upon the existing, cohesive object kind mechanisms is lost
and, to the extent the functionality is desired, it must be im-
plemented through a new mechanism peculiar to parameter
objects.

4 Summary

The derivational specialization of parameter objects for
PIA has been discussed and the infusion of semantic mean-
ing into the parameter itself illustrated. This infusion of
meaning is a change from previous approaches in which
parameters obtained semantic meaning by virtue of their
position in input/output streams and internal usage in a pro-
gram.

A key benefit of semantic infusion through object deriva-
tion is that measurement types and systems of measure-
ment can (and do) become encapsulated characteristics
of parameter objects. Parameter objects can now ‘know’
whether they are in feet or meters, pounds force or New-
tons and can, thus, tailor themselves through conversion to
desired forms on demand.
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